Sequences and Series

Exercise Find the first four terms of the sequence $a_{n}=3 n-1, n=1,2,3, \cdots$.
[Answer: $a_{1}=2, a_{2}=5, a_{3}=8, a_{4}=11$]
Example Let $\left\{a_{n}\right\}$ be the sequence defined by $a_{0}=2, a_{1}=1$, and
$(k+2)(k+1) a_{k+2}+(k+1)(k+3) a_{k+1}=2 a_{k}$ for $k=0,1,2, \cdots$, find a_{2} and a_{3}.
Solution:

$$
\begin{aligned}
& (k=0) \quad(2)(1) a_{2}+(1)(3) a_{1}=2 a_{0} \Rightarrow 2 a_{2}=2 a_{0}-3 a_{1} \Rightarrow a_{2}=\frac{2(2)-3(1)}{2} \Rightarrow \boldsymbol{a}_{2}=\frac{\mathbf{1}}{2} \\
& (k=1) \quad(3)(2) a_{3}+(2)(4) a_{2}=2 a_{1} \Rightarrow 6 a_{3}=2 a_{1}-8 a_{2} \\
& \quad \Rightarrow a_{3}=\frac{2(1)-8(1 / 2)}{6}=\frac{2-4}{6} \Rightarrow \boldsymbol{a}_{\mathbf{3}}=-\frac{1}{3}
\end{aligned}
$$

Exercise Without using a calculator, find the first 4 terms of the recursively defined sequence

- $a_{1}=4, a_{n+1}=1+\frac{1}{a_{n}} \quad$ [Answer: $a_{1}=4, a_{2}=\frac{5}{4}, a_{3}=\frac{9}{5}, a_{4}=\frac{14}{9}$]
- $a_{1}=2, a_{2}=3, a_{n+1}=a_{n}+a_{n-1} \quad\left[\right.$ Answer: $\left.a_{1}=2, a_{2}=3, a_{3}=5, a_{4}=8\right]$

Example Evaluate $\sum_{n=0}^{4} \frac{(-1)^{n}}{n!(2 n+1)}(0.5)^{2 n+1}$ and round your answer to 5 decimal places.
Solution:

$$
\begin{aligned}
& \sum_{n=0}^{4} \frac{(-1)^{n}}{n!(2 n+1)}(0.5)^{2 n+1} \\
&= \frac{(-1)^{0}}{0!(2(0)+1)}(0.5)^{2(0)+1}+\frac{(-1)^{1}}{1!(2(1)+1)}(0.5)^{2(1)+1}+\frac{(-1)^{2}}{2!(2(2)+1)}(0.5)^{2(2)+1}+ \\
& \quad+\frac{(-1)^{3}}{3!(2(3)+1)}(0.5)^{2(3)+1}+\frac{(-1)^{4}}{4!(2(4)+1)}(0.5)^{2(4)+1} \\
&= \frac{1}{(1)(1)}(0.5)^{1}+\frac{(-1)}{(1)(3)}(0.5)^{3}+\frac{1}{(2)(5)}(0.5)^{5}+\frac{(-1)}{(6)(7)}(0.5)^{7}+\frac{1}{(24)(9)}(0.5)^{9} \\
&= 0.5-0.041666+0.003125-0.000186+0.000009 \approx \mathbf{0 . 4 6 1 2 8}
\end{aligned}
$$

Exercise Find and evaluate each of the following sums

- $\sum_{n=1}^{5} n^{3} \quad$ [Answer: 225]

Arithmetic Sequences

$$
\begin{aligned}
& a_{n}=a_{n-1}+d \quad \text { and } \quad a_{n}=a_{1}+(n-1) d \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \text { । }
\end{aligned}
$$

Sequences and Series

Exercise

- For the arithmetic sequence $4,7,10,13, \cdots$
(a) find the $2011^{\text {th }}$ term; [Answer: 6,034]
(b) which term is 295 ? [Answer: $98^{\text {th }}$ term]
(c) find the sum of the first 750 terms. [Answer: 845,625]
- Find the sum of the first 800 natural numbers. [Answer: 320,400]

Geometric Sequences

$a_{n}=r a_{n-1} \quad$ and $\quad a_{n}=a_{1} r^{n-1}$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
Infinite Geometric Series: For $|r|<1, S=\frac{a_{1}}{1-r}$
Example Find the exact value of the geometric series $\frac{10}{9}+\frac{50}{81}+\frac{250}{729}+\cdots$.
Solution:
(Check that the given series is a geometric series by evaluating ratio of consecutive terms)

$$
\begin{aligned}
& \frac{50 / 81}{10 / 9}=\frac{50}{81} \times \frac{9}{10}=\frac{50}{10} \times \frac{9}{81}=5 \times \frac{1}{9}=\frac{5}{9} ; \\
& \frac{250 / 729}{50 / 81}=\frac{250}{729} \times \frac{81}{50}=\frac{250}{50} \times \frac{81}{729}=5 \times \frac{1}{9}=\frac{5}{9} ;
\end{aligned}
$$

geometric series with common ratio $r=\frac{5}{9}$
(Since $|r|=\frac{5}{9}<1$, apply the infinite sum formula for geometric series)

$$
S=\frac{a_{1}}{1-r}=\frac{10 / 9}{1-(5 / 9)}=\frac{10 / 9}{4 / 9}=\frac{10}{9} \times \frac{9}{4}=\frac{10}{4} \times \frac{9}{9}=\frac{5}{2}
$$

Exercise

- Find the sum of the first 10 terms of the geometric sequence $3,15,75,375, \cdots$.
[Answer: 7,324,218]
- Find the value of the infinite series $\sum_{n=0}^{\infty} \frac{2}{5^{n}}$. [Answer: $\frac{5}{2}$]

Maclaurin Series

- $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\cdots+\frac{f^{(n)}(0) x^{n}}{n!}+\cdots$
- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad($ all $x)$
- $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \quad($ all $x)$
- $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \quad($ all $x)$
- $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad($ for $|x|<1)$
- (Binomial Series) $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots \quad(|x|<1)$

Example Find the first three non-zero terms of the Maclaurin series for $\frac{1}{\sqrt[4]{1+x^{2}}}$.

Solution:

(Method 1: Use the definition - straight forward but tedious, in comparison with method 2)

$$
\begin{aligned}
& f(x)=\left(1+x^{2}\right)^{-1 / 4} \Rightarrow f(0)=(1+0)^{-1 / 4}=(1)^{-1 / 4}=1 \text { (first non - zero term); } \\
& f^{\prime}(x)=-\frac{1}{4}\left(1+x^{2}\right)^{-5 / 4} \cdot(2 x)=-\frac{x}{2}\left(1+x^{2}\right)^{-5 / 4} \\
& \Rightarrow f^{\prime}(0)=-\frac{0}{2}\left(1+0^{2}\right)^{-5 / 4}=0 \text { (this zero term doesn't count); } \\
& f^{\prime \prime}(x)=-\frac{1}{2}\left(1+x^{2}\right)^{-5 / 4}-\frac{x}{2} \cdot\left(-\frac{5}{4}\right)\left(1+x^{2}\right)^{-9 / 4} \cdot(2 x) \\
& =-\frac{1}{2}\left(1+x^{2}\right)^{-5 / 4}+\frac{5 x^{2}}{4}\left(1+x^{2}\right)^{-9 / 4}=\frac{\left(1+x^{2}\right)^{-9 / 4}}{4}\left[-2\left(1+x^{2}\right)+5 x^{2}\right] \\
& =\frac{\left(1+x^{2}\right)^{-9 / 4}}{4}\left[-2-2 x^{2}+5 x^{2}\right]=\frac{\left(1+x^{2}\right)^{-9 / 4}}{4}\left[3 x^{2}-2\right]=\frac{1}{4}\left(3 x^{2}-2\right)\left(1+x^{2}\right)^{-9 / 4} \\
& \Rightarrow f^{\prime \prime}(0)=\frac{1}{4}\left(3 \cdot 0^{2}-2\right)\left(1+0^{2}\right)^{-9 / 4}=\frac{1}{4}(-2)(1)=-\frac{1}{2}(\text { second non - zero term) } \\
& f^{\prime \prime \prime}(x)=\frac{1}{4}\left[(6 x)\left(1+x^{2}\right)^{-9 / 4}+\left(3 x^{2}-2\right) \cdot\left(-\frac{9}{4}\right)\left(1+x^{2}\right)^{-13 / 4} \cdot(2 x)\right] \\
& =\frac{1}{4}\left[(6 x)\left(1+x^{2}\right)^{-9 / 4}-\frac{9 x}{2}\left(3 x^{2}-2\right)\left(1+x^{2}\right)^{-13 / 4}\right] \\
& =\frac{1}{4}\left(\frac{3 x}{2}\right)\left(1+x^{2}\right)^{-13 / 4}\left[4\left(1+x^{2}\right)-3\left(3 x^{2}-2\right)\right] \\
& =\frac{3 x}{8}\left(1+x^{2}\right)^{-13 / 4}\left[4+4 x^{2}-9 x^{2}+6\right]=\frac{3 x}{8}\left(1+x^{2}\right)^{-13 / 4}\left(10-5 x^{2}\right) \\
& =\frac{15 x}{8}\left(1+x^{2}\right)^{-13 / 4}\left(2-x^{2}\right) \\
& \Rightarrow f^{\prime \prime \prime}(x)=\frac{15(0)}{8}\left(1+0^{2}\right)^{-13 / 4}\left(2-0^{2}\right)=0(\text { this zero term doesn't count); } \\
& f^{(4)}(x)=\frac{15}{8} \frac{d}{d x}\left[\left(2 x-x^{3}\right)\left(1+x^{2}\right)^{-13 / 4}\right] \\
& =\frac{15}{8}\left[\left(2-3 x^{2}\right)\left(1+x^{2}\right)^{-13 / 4}+\left(2 x-x^{3}\right) \cdot\left(-\frac{13}{4}\right)\left(1+x^{2}\right)^{-17 / 4} \cdot(2 x)\right] \\
& =\frac{15}{8}\left[\left(2-3 x^{2}\right)\left(1+x^{2}\right)^{-13 / 4}-\frac{13 x}{2}\left(2 x-x^{3}\right)\left(1+x^{2}\right)^{-17 / 4}\right]
\end{aligned}
$$

Sequences and Series

$$
\begin{aligned}
& \Rightarrow f^{(4)}(0)=\frac{15}{8}\left[\left(2-3 \cdot 0^{2}\right)\left(1+0^{2}\right)^{-13 / 4}-\frac{13 \cdot 0}{2}\left(2 \cdot 0-0^{3}\right)\left(1+0^{2}\right)^{-17 / 4}\right] \\
& =\frac{15}{4}(\text { third non }- \text { zero term })
\end{aligned}
$$

Hence $\frac{1}{\sqrt[4]{1+x^{2}}}=1+\frac{1}{2!}\left(-\frac{1}{2}\right) x^{2}+\frac{1}{4!}\left(\frac{15}{4}\right) x^{4}+\cdots$
$=1+\frac{1}{2}\left(-\frac{1}{2}\right) x^{2}+\frac{1}{24}\left(\frac{15}{4}\right) x^{4}+\cdots=1-\frac{1}{4} x^{2}+\frac{5}{32} x^{4}+\cdots$
(Method 2: Use the binomial series and replace x and n by x^{2} and $-\frac{1}{4}$ respectively)

$$
\begin{aligned}
& \frac{1}{\sqrt[4]{1+x^{2}}}=\left(1+x^{2}\right)^{-1 / 4}=1+\left(-\frac{1}{4}\right)\left(x^{2}\right)+\frac{1}{2}\left(-\frac{1}{4}\right)\left(-\frac{1}{4}-1\right)\left(x^{2}\right)^{2}+\cdots \\
& =1-\frac{1}{4} x^{2}++\frac{1}{2}\left(-\frac{1}{4}\right)\left(-\frac{5}{4}\right) x^{4}+\cdots=\mathbf{1}-\frac{1}{4} x^{2}+\frac{5}{32} x^{4}+\cdots
\end{aligned}
$$

Example Find the power series of $\tan ^{-1} x$ centered at zero.

Solution:

(Since $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$, we can find the power series of $\tan ^{-1} x$ by integrating the power series of $\frac{1}{1+x^{2}}$, which can be obtained by using the Binomial series)

$$
\begin{aligned}
& \frac{1}{1+x^{2}}=\left(1+x^{2}\right)^{-1}=\sum_{n=0}^{\infty} \frac{(-1)(-2) \cdots(-n+1)(-n)}{n!}\left(x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} n(n-1) \cdots(2)(1)}{n!} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
& \Rightarrow \tan ^{-1} x=\int \frac{1}{1+x^{2}} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C
\end{aligned}
$$

(To determine C, evaluate both sides at a convenient value of x, say $x=0$)

$$
\begin{aligned}
& \tan ^{-1} 0=\sum_{n=0}^{\infty}(-1)^{n} \frac{0^{2 n+1}}{2 n+1}+C \Rightarrow 0=0+C \Rightarrow C=0, \text { hence } \\
& \tan ^{-1} \boldsymbol{x}=\sum_{\boldsymbol{n}=\mathbf{0}}^{\infty}(-\mathbf{1})^{\boldsymbol{n}} \frac{\boldsymbol{x}^{2 n+1}}{2 \boldsymbol{2 n + 1}}
\end{aligned}
$$

Exercise

- By direct expansion, find the first four nonzero terms of the Maclaurin expansion for $f(x)=\left(1+e^{x}\right)^{2} . \quad\left[\right.$ Answer: $\left.\left(1+e^{x}\right)^{2}=4+4 x+3 x^{2}+\frac{5}{3} x^{3}+\cdots\right]$
- Find the first three nonzero terms of the expansion for $f(x)=\frac{1}{\sqrt{1-2 x}}$ by using the binomial series. [Answer: $\frac{1}{\sqrt{1-2 x}}=1+x+\frac{3}{2} x^{2}+\cdots$]

Taylor Series

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots+
$$

Sequences and Series

Example Approximate $\sqrt{9.6}$ by using the second Taylor polynomial of $f(x)=\sqrt{x}$ centered at $a=9$.

Solution:

$$
\begin{array}{ll}
f(x)=\sqrt{x} & \Rightarrow f(a)=\sqrt{9}=3 ; \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} & \Rightarrow \quad f^{\prime}(a)=\frac{1}{2 \sqrt{9}}=\frac{1}{6} ; \\
f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2} & \Rightarrow \quad f^{\prime \prime}(a)=-\frac{1}{4(\sqrt{9})}=-\frac{1}{108} ; \\
P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f \prime \prime(a)}{2!}(x-a)^{2} \\
\sqrt{9.6}=f(9.6) \approx P_{2}(9.6)=3+\frac{1}{6}(9.6-9)+\frac{(-1 / 108)}{2!}(9.6-9)^{2} \\
\quad=3+\frac{1}{6}(0.6)-\frac{1}{216}(0.36) \approx \mathbf{3 . 0 9 8 3 3}
\end{array}
$$

Exercise

- Find the first three nonzero terms of the Taylor expansion for $f(x)=\cos x$, with $a=\frac{\pi}{3}$.
[Answer: $\cos x=\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}+\cdots$]
- Expand $f(x)=e^{x}$ in a Taylor series centered at $a=1$.
[Answer: $e^{x}=e+e(x-1)+\frac{e}{2}(x-1)^{2}+\frac{e}{6}(x-1)^{3}+\cdots$]
- Expand $f(x)=\sqrt{x}$ in powers of $(x-4)$.
[Answer: $\sqrt{x}=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}-\cdots$]

