Quadratic Equations

Solving a Quadratic Equation $\left(a x^{2}+b x+c=0\right)$

- Factoring (Zero Product Property: $a \times b=0 \Rightarrow a=0$ or $b=0$)
- Completing the Square:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \Rightarrow a x^{2}+b x=-c \Rightarrow a\left[x^{2}+\frac{b}{a} x\right]=-c \\
& \Rightarrow a\left[\left\{x^{2}+\frac{b}{a} x+\left(\frac{b / a}{2}\right)^{2}\right\}-\left(\frac{b / a}{2}\right)^{2}\right]=-c \Rightarrow a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}\right]=-c \\
& \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}=-\frac{c}{a} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& \Rightarrow x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \Rightarrow x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

- Quadratic Formula: $a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Using the determinant $D=b^{2}-4 a c$ to decide the number and the nature of the solutions of a quadratic equation

- $D>0$ is a perfect square: the roots are real, rational, and unequal
- $D>0$ is not a perfect square: the roots are real, irrational, and unequal
- $D=0$:
- $D<0$: the roots are real, rational, and equal the roots are complex numbers and unequal (but conjugates)

Example Solve $x^{2}+x=6$

Solution:

$$
x^{2}+x=6 \Rightarrow x^{2}+x-6=0
$$

(Since the discriminant $D=b^{2}-4 a c=1^{2}-4(1)(-6)=1+24=25$ is the square of the rational number 5, an easy way to solve this quadratic equation is by factoring the quadratic expression, using the $a c$-method)

$$
\begin{aligned}
& x^{2}+x-6=0 \Rightarrow x^{2}+3 x-2 x-6=0 \Rightarrow\left(x^{2}+3 x\right)+(-2 x-6)=0 \\
& \Rightarrow x(x+3)-2(x+3)=0 \Rightarrow(x+3)(x-2)=0 \Rightarrow \boldsymbol{x}=-\mathbf{3} \text { or } \boldsymbol{x}=\mathbf{2}
\end{aligned}
$$

Quadratic Equations

Exercise Solve the following equations.

- $x^{2}-4 x=0 \quad$ [Answer: $\left.x=0,4\right]$
- $t^{2}+2 t=0 \quad$ [Answer: $t=-2,0$]
- $3 x^{2}+12 x=0 \quad$ [Answer: $x=-4,0$]
- $100-m^{2}=0 \quad$ [Answer: $m=-10,10$]
- $m^{2}=3-2 m \quad$ [Answer: $m=-3,1$]
- $s^{2}-8 s=9$ [Answer: $\left.s=-1,9\right]$
- $8 y^{2}+24=32 y \quad$ [Answer: $\left.y=1,3\right]$
- $x^{2}-8=2 x \quad$ [Answer: $\left.x=-2,4\right]$
- $2 u^{2}=3+u \quad$ [Answer: $u=-1, \frac{3}{2}$]
- $k^{2}-4=0 \quad$ [Answer: $\left.k=-2,2\right]$
- $2 t^{2}-10=0 \quad$ [Answer: $t=\sqrt{5},-\sqrt{5}$]
- $x^{2}-6 x-10=0 \quad$ [Answer: $x=3-\sqrt{19}, 3+\sqrt{19} \approx-1.359,7.359$]
- $2 y^{2}-1=3 y \quad$ [Answer: $y=\frac{3-\sqrt{17}}{4}, \frac{3+\sqrt{17}}{4} \approx-0.281,1.781$]

Exercise Solve $r^{2}+z^{2}=36$ for z. [Answer: $z= \pm \sqrt{36-r^{2}}$]
Example Solve $t^{2}-6 t+9=0$

Solution:

(Since the discriminant $D=b^{2}-4 a c=(-6)^{2}-4(1)(9)=36-36=0$, the quadratic equation has equal real rational roots; an easy way to solve this quadratic equation is by factoring the quadratic expression as perfect square trinomial)

$$
t^{2}-6 t+9=0 \Rightarrow t^{2}-2(3)(t)+(3)^{2}=0 \Rightarrow(t-3)^{2}=0 \Rightarrow \boldsymbol{t}=\mathbf{3} \text { or } \boldsymbol{t}=\mathbf{3}
$$

Exercise Solve the following equation.

- $r^{2}-10 r+25=0 \quad$ [Answer: $\left.r=5,5\right]$

Example Solve $m^{2}+2 m+5=0$

Solution:

(Since $b^{2}-4 a c=2^{2}-4(1)(5)=4-20=-16$ is not the square of a rational number, we cannot factor the left-hand-side and hence the easiest way to solve this quadratic

Quadratic Equations

equation is by applying the quadratic formula)

$$
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=\mathbf{- 1} \pm \mathbf{2 i}
$$

Exercise Solve the following equations.

- $s^{2}+9=0 \quad$ [Answer: $\left.s=-3 i, 3 i\right]$

Example Solve the following equations. $t^{3}-2 t=0$
Solution:
(Factor out common factor) $t\left(t^{2}-2\right)=0$
(Use the zero product property: $a b=0 \Rightarrow a=0$ or $b=0$)

$$
\begin{gathered}
\Rightarrow t=0 \text { or } t^{2}-2=0 \Rightarrow t=0 \text { or } t=\frac{-0 \pm \sqrt{0^{2}-4(1)(-2)}}{2(1)} \\
\Rightarrow t=0 \text { or } t= \pm \frac{\sqrt{8}}{2} \Rightarrow t=0 \text { or } t= \pm \frac{2 \sqrt{2}}{2} \Rightarrow t=\mathbf{0} \text { or } t=\sqrt{2} \text { or } t=-\sqrt{2}
\end{gathered}
$$

Solving equations quadratic in form

Example $x^{4}-5 x^{2}+4=0 . \quad$ [Answer: $\left.x=-2,-1,1,2\right]$

Solution:

(Rewrite the equation as a quadratic equation by treating x^{2} as a new variable)

$$
\left(x^{2}\right)^{2}-5\left(x^{2}\right)+4=0
$$

(Since the discriminant $D=b^{2}-4 a c=(-5)^{2}-4(1)(4)=25-16=9$ is a perfect square, we can solve the equation by factoring the quadratic expression using either the $a c$-method or trial and error $\Rightarrow\left(x^{2}\right)^{2}-\left(x^{2}\right)-4\left(x^{2}\right)+4=0$

$$
\begin{aligned}
& \Rightarrow\left[\left(x^{2}\right)^{2}-\left(x^{2}\right)\right]+\left[-4\left(x^{2}\right)+4\right]=0 \Rightarrow\left(x^{2}\right)\left[\left(x^{2}\right)-1\right]-4\left[\left(x^{2}\right)-1\right]=0 \\
& \Rightarrow\left[\left(x^{2}\right)-1\right]\left[\left(x^{2}\right)-4\right]=0
\end{aligned}
$$

(Use the factoring formula $a^{2}-b^{2}=(a+b)(a-b)$ to factor the left hand side completely) $\Rightarrow\left(x^{2}-1^{2}\right)\left(x^{2}-2^{2}\right)=0 \Rightarrow(x+1)(x-1)(x+2)(x-2)=0$
(Solve for x and check the answers in the original equation) $\boldsymbol{x}=\mathbf{- 1 , 1}, \mathbf{- 2}, \mathbf{2}$

$$
\begin{aligned}
& x=-1:(-1)^{4}-5(-1)^{2}+4=0 ? \quad \Leftrightarrow \quad 1-5+4=0 ? ~ Y e s! \\
& x=1:(1)^{4}-5(1)^{2}+4=0 ? \quad \Leftrightarrow \quad 1-5+4=0 ? \text { Yes! }
\end{aligned}
$$

Quadratic Equations

$$
\begin{aligned}
& x=-2:(-2)^{4}-5(-2)^{2}+4=0 ? \quad \Leftrightarrow 16-20+4=0 ? ~ Y e s! \\
& x=1:(2)^{4}-5(2)^{2}+4=0 ? \Leftrightarrow 16-20+4=0 ? \text { Yes! }
\end{aligned}
$$

