Polynomials

Fundamental Operations with Polynomials

Evaluating Polynomial Functions

Addition, Subtraction and Multiplication of Polynomials
Multiplying Binomials:

- Square of a sum: $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- Square of a difference: $(a-b)^{2}=a^{2}-2 a b+b^{2}$
- Product of a sum and a difference: $(a+b)(a-b)=a^{2}-b^{2}$
- the FOIL Method: $(a x+b)(c x+d)=a c x^{2}+(a d+b c) x+b d$
- Cube of a sum: $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
- Cube of a difference: $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$

Example Expand $(1+x)\left(1+2 x-2 x^{2}+\frac{4}{3} x^{3}\right)$ and simplify by collecting like terms.

Solution:

(Systematically multiply each term in the first factor into each factor in the second factor)
$(1)(1)+(1)(2 x)+(1)\left(-2 x^{2}\right)+(1)\left(\frac{4}{3} x^{3}\right)+(x)(1)+(x)(2 x)+(x)\left(-2 x^{2}\right)+$
(x) $\left(\frac{4}{3} x^{3}\right)=1+2 x-2 x^{2}+\frac{4}{3} x^{3}+x+2 x^{2}-2 x^{3}+\frac{4}{3} x^{4}$
(Simplify by collecting like terms)

$$
=1+(2 x+x)+\left(-2 x^{2}+2 x^{2}\right)+\left(\frac{4}{3} x^{3}-2 x^{3}\right)+\frac{4}{3} x^{4}=1+3 x-\frac{2}{3} x^{3}+\frac{4}{3} x^{4}
$$

Exercise Perform the multiplication.

- $(2 x-7)(3 x+4)$ [Answer: $\left.6 x^{2}-13 x-28\right]$
- $\left(3 y^{4}-5\right)^{2} \quad$ [Answer: $9 y^{8}-30 y^{4}+25$]
- $\left(y^{2}+5 x\right)\left(y^{2}-5 x\right) \quad$ [Answer: $y^{4}-25 x^{2}$]
- $\left(4 x^{4} y-7 x^{2} y+3 y\right)\left(2 y-3 x^{2} y\right) \quad$ [Answer: $29 x^{4} y^{2}-12 x^{6} y^{2}-23 x^{2} y^{2}+6 y^{2}$]

Division of Polynomials: Ordinary (Long Division)

- dividend $=($ divisor) (quotient) + (remainder)
- $\frac{\text { dividend }}{\text { divisor }}=$ quotient $+\frac{\text { remainder }}{\text { divisor }}$

Polynomials

Example Perform long division $\frac{2 x^{2}+1}{x-3} \quad$ [Answer: $\frac{2 x^{2}+1}{x-3}=2 x+6+\frac{19}{x-3}$]

Solution:

(Use long division to find the quotient and the remainder when the dividend $2 x^{2}+1$ is divided by the divisor $x-3$, then we can write $\frac{\text { Dividend }}{\text { Divisor }}=$ Quotient $\left.+\frac{\text { Remainder }}{\text { Divisor }}\right)$

$$
x \quad-3
$$

$2 x+6=$ Quotient

		$2 x$	+6	= Quotient
	$2 x^{2}$	+0x	+1	
-)	$2 x^{2}$	$-6 x$		
	-)	$6 x$	+1	
		$6 x$	-18	
			19	= Remainder

$$
\frac{2 x^{2}+1}{x-3}=2 x+6+\frac{19}{x-3}
$$

Exercise Perform the following long division

- $\frac{x^{2}-5}{x-2} \quad$ [Answer: $\frac{x^{2}-5}{x-2}=x+2-\frac{1}{x-2}$]
- $\frac{x^{4}-81}{x^{2}+3 x-1}$ [Answer: $\frac{x^{4}-81}{x^{2}+3 x-1}=x^{2}-3 x+10+\frac{-33 x-71}{x^{2}+3 x-1}$]
- $\frac{15 x^{3}+101 x^{2}+384 x+24}{(5 x-1)\left(x^{2}+6 x+25\right)} \quad\left[\right.$ Answer: $\left.3+\frac{14 x^{2}+27 x+99}{(5 x-1)\left(x^{2}+6 x+25\right)}\right]$

Factoring Polynomials

- Factoring out the Greatest Common Factor: $a x+a y=a(x+y)$

Exercise Factor completely $12 x^{2} y^{3}-20 x^{3} y$. [Answer: $4 x^{2} y\left(3 y^{2}-5 x\right)$]

- Factoring Difference of Two Square: $a^{2}-b^{2}=(a+b)(a-b)$

Exercise Factor completely $6 x^{4}-96 y^{4}$. [Answer: $6\left(x^{2}+4 y^{2}\right)(x+2 y)(x-2 y)$]

- Factoring a Difference or Sum of Two Cubes:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) ; \quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Exercise Factor completely $24 t^{3}-375$. [Answer: $3(2 t-5)\left(4 t^{2}+10 t+25\right)$]

- Factoring Perfect Square Trinomials:

$$
a^{2}+2 a b+b^{2}=(a+b)^{2} ; \quad a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

Exercise Factor completely $25 y^{2}+3 y y+9$. [Answer: $(5 y+3)^{2}$]

Polynomials

- Factoring $a x^{2}+b x+c$: Trial and Error, or the ac-Method:
- Factor out the largest common factor
- Multiply the leading coefficient a and the constant c
- Try to factor the product $a c$ so that the sum of the factors is b (that is, find integers p and q such that $p q=a c$ and $p+q=b$)
- Split the middle term (that is, write it as a sum of the factors found in the previous step)
- Factor by grouping

Example Factor completely $3 t^{2}+10 t-8$.

Solution:

(Find p and q in the $a c$-method) Use trial and error to find p and q satisfying

$$
\left\{\begin{array}{c}
p q=(3)(-8)=-24 \\
p+q=10
\end{array} \Rightarrow p \text { and } q \text { are } 12 \text { and }-2\right.
$$

(Split the middle term using the previous result and factor by grouping)

$$
\begin{aligned}
& 3 t^{2}+10 t-8=3 t^{2}+12 t-2 t-8=\left(3 t^{2}+12 t\right)+(-2 t-8) \\
& =3 t(t+4)-2(t+4)=(\boldsymbol{t}+\mathbf{4})(\mathbf{3 t}-\mathbf{2})
\end{aligned}
$$

Exercise Factor completely

- $2 y^{3}-14 y^{2}+24 y$. [Answer: $2 y(y-3)(y-4)$]
- Factoring Polynomials with Four Terms: try factoring by grouping

Example Factor completely $x^{3}-3 x^{2}-4 x+12$.
Solution:

$$
\begin{gathered}
x^{3}-3 x^{2}-4 x+12=\left(x^{3}-3 x^{2}\right)+(-4 x+12)=x^{2}(x-3)-4(x-3) \\
=(x-3)\left(x^{2}-4\right)=(x-3)\left(x^{2}-2^{2}\right)=(\boldsymbol{x}-\mathbf{3})(\boldsymbol{x}+2)(\boldsymbol{x}-\mathbf{2})
\end{gathered}
$$

- Factoring by Substitution

Example Simplify $\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3}$.

Solution:

(Factor out common factor before expanding and simplifying)

$$
\begin{aligned}
& {\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{2^{2}}+(k+1)^{3}=(k+1)^{2}\left[\frac{1}{4} k^{2}+(k+1)\right] } \\
= & (k+1)^{2}\left[\frac{k^{2}+4 k+4}{4}\right]=\frac{1}{4}(k+1)^{2}\left(k^{2}+4 k+4\right)=\frac{\mathbf{1}}{4}(\boldsymbol{k}+\mathbf{1})^{2}(\boldsymbol{k}+\mathbf{2})^{2}
\end{aligned}
$$

Polynomials

(Factor $k^{2}+4 k+4$ using the special product formula $\left.a^{2}+2 a b+b^{2}=(a+b)^{2}\right)$ $=\frac{1}{4}(k+1)^{2}(k+2)^{2}$
Exercise Determine if $(x+3)$ is a factor of $x^{3}+2 x^{2}-5 x-6$.
[Answer: yes, $x^{3}+2 x^{2}-5 x-6=(x+3)\left(x^{2}-x-2\right)$]

Solving Equations by Factoring

- Zero Factor Property: $a \cdot b=0 \Leftrightarrow a=0$ or $b=0$
- Pythagorean Theorem: For a right triangle with legs a, b and hypotenuse $c, a^{2}+b^{2}=c^{2}$ Example Solve $21 x^{2} \geq 8-2 x$.

Solution:

(Replace the inequality sign by the equal sign, and rewrite the resulting equation to have a zero on one side) $21 x^{2}=8-2 x \Rightarrow 21 x^{2}+2 x-8=0$
(Solve the equation by factoring completely the nonzero side; in this example, use the ac-

$$
\begin{aligned}
& \text { method) }\left\{\begin{array}{c}
p q=(21)(-8)=-168 \\
p+q=2
\end{array} \Rightarrow p \text { and } q \text { are } 14 \text { and }-12\right. \\
& \Rightarrow 21 x^{2}+14 x-12 x-8=0 \Rightarrow\left(21 x^{2}+14 x\right)+(-12 x-8)=0 \\
& \Rightarrow 7 x(3 x+2)-4(3 x+2)=0 \Rightarrow(3 x+2)(7 x-4)=0 \\
& \Rightarrow 3 x+2=0 \text { or } 7 x-4=0 \Rightarrow x=-\frac{2}{3} \text { or } x=\frac{4}{7}
\end{aligned}
$$

(Separate the real number line $(-\infty, \infty)$ into intervals by using the solution(s) of the equation; decide which of the intervals created belong to the solution set by using a test number - pick a convenient number in each of the intervals and check whether the original inequality is satisfied by that number; if it does, the interval that contains this number is part of the solution set)

Interval	Test Number x	$21 x^{2} \geq 8-2 x ?$
$\left(-\infty,-\frac{2}{3}\right)$	-1	$21(-1)^{2} \geq 8-2(-1) ? \Leftrightarrow 21 \geq 8+2 ? \quad$ Yes!
$\left(-\frac{2}{3}, \frac{4}{7}\right)$	0	$21(0)^{2} \geq 8-2(0) ? \Leftrightarrow 0 \geq 8-0 ?$ No!
$\left(\frac{4}{7}, \infty\right)$	1	$21(1)^{2} \geq 8-2(1) ? \Leftrightarrow 21 \geq 8-2 ? \quad$ Yes!

(Determine whether each of the numbers used to create the intervals satisfies the inequality and hence should be included in the solution set)

Polynomials

$$
\begin{aligned}
& x=-\frac{2}{3}: 21\left(-\frac{2}{3}\right)^{2} \geq 8-2\left(-\frac{2}{3}\right) ? \Leftrightarrow \frac{28}{3} \geq 8+\frac{4}{3} ? \quad \Leftrightarrow \quad \frac{28}{3} \geq \frac{28}{3} ? \text { Yes! } \\
& x=\frac{4}{7}: 21\left(\frac{4}{7}\right)^{2} \geq 8-2\left(\frac{4}{7}\right) ? \Leftrightarrow \frac{48}{7} \geq 8-\frac{8}{7} ? \Leftrightarrow \frac{48}{7} \geq \frac{48}{7} ? \text { Yes! }
\end{aligned}
$$

Hence the solution set is $\left(-\infty,-\frac{2}{3}\right] \cup\left[\frac{4}{7}, \infty\right)$.
Exercise

- Solve the equation $x^{3}-2 x^{2}-9 x+18=0$. [Answer: $x=-3,2,3$]
- Solve $x^{3}-4 x<0$. [Answer: $(-\infty,-2) \cup(0,2)$]

