Plane Geometry

Classification of triangles:

- Scalene: No two sides are equal in length
- Isosceles: two sides are equal in length
- Equilateral: all three sides are equal in length
- Right: one angle is 90°

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
Solving for a variable Geometric Formulas:

- Triangle: Perimeter $P=a+b+c, \quad$ Area $A=1 / 2 b h ;$

Hero's formula for area of triangle:

$$
A=\sqrt{s(s-a)(s-b)(s-c)} \quad \text { where } \quad s=\frac{1}{2}(a+b+c)
$$

- Trapezoid: Area $A=1 / 2 h\left(b_{1}+b_{2}\right)$
- Parallelogram: Area $A=b h$
- Rectangle: Area $A=L W$; Perimeter $P=2 L+2 W$
- Square (Special case of a rectangle): Apply formulae for rectangle
- Circle:

$$
\text { Diameter } d=2 r, \quad \text { Area } A=\pi r^{2}
$$

Perimeter (Circumference) $C=2 \pi r$ or $\pi d ; \quad$ Arc length $s=r \theta$
Example Find the circumference and area of the circle with radius 10 m .

Solution:

Circumference $=2 \pi r=2 \pi(10 \mathrm{~m})=\mathbf{2 0 \pi} \mathbf{m}$
Area $=\pi r^{2}=\pi(10 \mathrm{~m})^{2}=\pi\left(100 \mathrm{~m}^{2}\right)=\mathbf{1 0 0} \boldsymbol{\pi} \mathbf{m}^{2}$

Plane Geometry

Angles and Parallel Lines

- The sum of the three interior angles of a triangle is equal to 180°.
- The sum of any two interior angles of a triangle equals the exterior angle at the remaining vertex:

- Vertically opposite angles are equal (abbreviated as "vert. opp. $\angle \mathrm{s}$ ")

Example Find the values of x and y .

Solution:

$y=110$
$30^{\circ}+\mathrm{y}^{\circ}+\mathrm{x}^{\circ}=180^{\circ} \quad$ (adj. $\angle \mathrm{s}$ on a st. line)
$30^{\circ}+110^{\circ}+\mathrm{x}^{\circ}=180^{\circ}$
$140^{\circ}+\mathrm{x}^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-140^{\circ}$
$\mathrm{x}=40$

x

Plane Geometry

- Two distinct lines are parallel (to each other) if they do not intersect (even if they are extended indefinitely at both ends).
- A transversal of two distinct lines $A B$ and $C D$ is a third line that cuts both $A B$ and $C D$.

- We have four pair of corresponding angles:
$\angle \alpha$ and $\angle v, \quad \angle \beta$ and $\angle \mu, \quad \angle \gamma$ and $\angle \varphi, \quad \angle \delta$ and $\angle \theta$.
- The angles $\angle \alpha, \angle \beta, \angle \gamma$ and $\angle \delta$ are called interior angles; the angles $\angle \theta, \angle \varphi, \angle \mu$ and $\angle v$ are the exterior angles.
- $\angle \beta$ and $\angle \delta$ are alternate interior angles (and so are $\angle \alpha$ and $\angle \gamma$); $\angle \varphi$ and $\angle v$ are alternate exterior angles (and so are $\angle \theta$ and $\angle \mu$).
- Two distinct lines AB and CD are parallel if (and only if) any of the following conditions is satisfied:
- Interior angles on the same side of the transversal are supplementary; that is, they add up to 180° (abbreviated as "int. $\angle \mathrm{s}$ of // lines"):

$$
\angle \alpha+\angle \gamma=180^{\circ}, \quad \angle \beta+\angle \gamma=180^{\circ}
$$

- Any one of the four pairs of corresponding angles are equal (abbreviated as "corr. $\angle \mathrm{s}$ of // lines"):

$$
\angle \alpha=\angle v, \quad \angle \beta=\angle \mu, \quad \angle \gamma=\angle \phi, \quad \text { or } \quad \angle \delta=\angle \theta
$$

- Any one of the two pairs of alternate interior angles is equal (abbreviated as "alt. int. $\angle \mathrm{s}$ of // lines"):

$$
\angle \alpha=\angle \gamma \quad \text { or } \quad \angle \beta=\angle \delta
$$

Plane Geometry

Example

In the figure, $\mathrm{AB} / / \mathrm{CD}$ and CF, AE meet at the point G .
Find $\angle \mathrm{x}$.

Solution:

Draw a straight line GN parallel to AB and CD through G .
Let $\angle \mathrm{EGN}=\angle \mathrm{x}$, so that $\angle \mathrm{x}=\angle \mathrm{x}_{1}+\angle \mathrm{x}_{2}$
Now $\quad \angle \mathrm{x}_{1}=30^{\circ}$ (corr. $\angle \mathrm{s}$ of // lines GN and CD)
and $\quad \angle \mathrm{x}_{2}=40^{\circ} \quad$ (corr. $\angle \mathrm{s}$ of $/ /$ lines GN and AB)
Thus $\quad \angle \mathrm{x}=\angle \mathrm{x}_{1}+\angle \mathrm{x}_{2}=30^{\circ}+40^{\circ}=7 \mathbf{7 0}^{\circ}$

Example Find the values of x and y in the figure.
Solution:

$$
\begin{array}{rlr}
\mathrm{y} & =63 \quad \text { (alt. int. } \angle \mathrm{s} \text { of } / / \text { lines) } \\
\mathrm{x} & =180-\mathrm{y} \quad \quad \text { (adj. } \angle \mathrm{s} \text { on a st. line) } \\
& =180-63 \\
& =117
\end{array}
$$

Example Find the values of x and z in the figure.

Solution:

$$
\begin{aligned}
\mathrm{z} & +63=180 \quad \quad \text { (int. } \angle \mathrm{s} \text { of } / / \text { lines) } \\
\mathrm{z} & =180-63=117 \\
\mathrm{x} & =\mathrm{z} \\
& =117
\end{aligned}
$$

Plane Geometry

Exercises Find the unknown angles marked.

Plane Geometry

$\underline{\text { Similar Triangles }}$

$\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{PQR}$, denoted by $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, if (and only if) any of the following conditions is satisfied:

- The three angles of one triangle are equal to the three angles of the other respectively (abbreviated as AAA):

$$
\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R
$$

- The ratio of one side of one triangle to one side of the other triangle is equal to the ratio of another pair of sides of the two triangles, and the included angles of these sides in the triangles are equal (abbreviated as SAS): for instance,

$$
\frac{A B}{P Q}=\frac{A C}{P R} \quad \text { and } \quad \angle A=\angle P
$$

- The ratios of the sides of the two triangle are the same for all three sides (abbreviated as SSS):

$$
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}
$$

Example Find all similar triangles in the figure.

Solution:

$\angle \mathrm{ACB}=\angle \mathrm{AED}=75^{\circ}$
Hence $\mathrm{BC} / / \mathrm{DE}$ (converse of corr. $\angle \mathrm{s}$ of // lines)
Moreover, $\angle \mathrm{ABC}=\angle \mathrm{ADE} \quad($ corr. $\angle \mathrm{s}$ of $/ /$ lines $)$
$\therefore \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{ADE}$

Plane Geometry

Example Find all similar triangles are there in the figure.

Solution:

$$
\text { Note } \begin{aligned}
& \angle \mathrm{ADC}=\angle \mathrm{BDA}=\angle \mathrm{BAC}=90^{\circ} \\
& \angle \mathrm{DCA}=\angle \mathrm{DAB} \\
&=\angle \mathrm{ACB} \\
& \angle \mathrm{CAD}=\angle \mathrm{ABD}=\angle \mathrm{CBA}
\end{aligned}
$$

Hence $\quad \triangle \mathrm{DCA} \sim \triangle \mathrm{DAB} \sim \Delta \mathrm{ACB}$

Example Find y and z.

Solution:

By the Pythagorean theorem,

$$
\begin{aligned}
& B C^{2}=A C^{2}+A B^{2} \\
& \Rightarrow(y+z)^{2}=25+144 \\
& \Rightarrow y+z=\sqrt{169}=13
\end{aligned}
$$

From the previous example, $\triangle \mathrm{DAB} \sim \triangle \mathrm{ACB}$

$$
\begin{aligned}
& \text { Hence } \frac{B D}{A B}=\frac{A B}{C B} \Rightarrow \frac{z}{12}=\frac{12}{y+z} \Rightarrow z=\frac{12 \times 12}{13}=\frac{144}{13} \\
& y+z=13 \Rightarrow y=13-\frac{144}{13}=\frac{\mathbf{2 5}}{13}
\end{aligned}
$$

Example Find EC.

Solution:

Since DE // BC, we have

$$
\begin{cases}\angle A D E=\angle A B C & \text { (corr. } \angle \mathrm{s} \text { of } / / \text { lines DEand } \mathrm{BC}) \\ \angle A E D=\angle A C B & \text { (corr. } \angle \mathrm{s} \text { of } / / \text { lines DEand } \mathrm{BC}) \\ \angle D A E=\angle B A C & \text { (Same angle) }\end{cases}
$$

Hence $\triangle A D E \sim \triangle A B C$ (AAA)

$$
\begin{aligned}
& \frac{A B}{A D}=\frac{A C}{A E} \Rightarrow \frac{A D+D B}{A D}=\frac{A E+E C}{A E} \\
& \Rightarrow 1+\frac{D B}{A D}=1+\frac{E C}{A E} \Rightarrow \frac{8}{28}=\frac{E C}{21} \\
& \therefore E C=\frac{8 \times 21}{28}=6
\end{aligned}
$$

Plane Geometry

Exercises
If $\mathrm{DE}=32$, find the length of BC .
pg. 8

