Linear Equations and Inequalities (1 variable)

3 types of equations

- Identity: the equation is satisfied for all values of the variable
- Conditional Equation: the equation is satisfied by at least one (but not all) values of the variable
- Inconsistent Equation: the equation is satisfied by no value of the variable

Example Solve $7(3 x+9)=10-(x+2)$.
Solution:
(Expand both sides of the equation) $21 x+63=10-x-2$
(Collect like terms and solve for x)

$$
21 x+x=10-2-63 \Rightarrow 22 x=-55 \Rightarrow x=-\frac{55}{22}=-\frac{5}{2}
$$

(Check the answer found satisfies the original equation)
L. H.S. $=7\left[3\left(-\frac{5}{2}\right)+9\right]=7\left[-\frac{15}{2}+9\right]=7\left[\frac{3}{2}\right]=\frac{21}{2}$
R. H. S. $=10-\left(-\frac{5}{2}+2\right)=10-\left(-\frac{1}{2}\right)=\frac{21}{2}$

Hence $\boldsymbol{x}=-\frac{\mathbf{5}}{\mathbf{2}}$
Example Solve the formula $p=n p+q$ for p.

Solution:

(Collect the terms involving the variable p on the same side of the equation)

$$
p-n p=q
$$

(Solve for p) $\quad p(1-n)=q \Rightarrow \boldsymbol{p}=\frac{\boldsymbol{q}}{\mathbf{1 - n}}$
Example Solve $|4 x-3|+1=7$.
Solution:

$$
|4 x-3|=7-1 \Rightarrow|4 x-3|=6 \Rightarrow\left\{\begin{array} { c }
{ 4 x - 3 = 6 } \\
{ \text { or } } \\
{ 4 x - 3 = - 6 }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ 4 x = 9 } \\
{ \text { or } } \\
{ 4 x = - 3 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=9 / 4 \\
\text { or } \\
x=-3 / 4
\end{array}\right.\right.\right.
$$

(Check the answers in the original equation)

$$
x=\frac{9}{4} \Rightarrow\left\{\begin{array}{l}
\text { L. H.S. }=\left|4\left(\frac{9}{4}\right)-3\right|+1=|9-3|+1=|6|+1=6+1=7 \\
\text { R.H.S. }=7
\end{array}\right.
$$

Linear Equations and Inequalities (1 variable)

$$
\begin{aligned}
& x=-\frac{3}{4} \Rightarrow\left\{\begin{array}{l}
\text { L. H.S. }=\left|4\left(-\frac{3}{4}\right)-3\right|+1=|-3-3|+1=|-6|+1=6+1=7 \\
\text { R. H.S. }=7
\end{array}\right. \\
& \text { Hence } \boldsymbol{x}=\frac{9}{4} \text { or } \boldsymbol{x}=-\frac{3}{4}
\end{aligned}
$$

Exercise

- Solve $6 x-7=2 \quad$ [Answer: $\frac{3}{2}$]
- Solve $2(5-3 x)=8-3(x+2)$. [Answer: $\frac{8}{3}$]
- Solve the formula $P=2 L+2 W$ for L. [Answer: $L=\frac{P-2 W}{2}$ or $L=\frac{P}{2}-W$]
- Solve the formula $A=P+\operatorname{Prt}$ for P. [Answer: $P=\frac{A}{1+r t}$]
- Solve $|x-3|=2 . \quad[$ Answer: $x=1,5]$

Addition/Multiplication Property of Equality in one variable

- $a>b \Rightarrow a+c>b+c$ and $a-c>b-c \quad$ (similar results hold for \geq)
- $\quad a>b \Rightarrow\left\{\begin{array}{lll}\text { for any } c>0: & a c>b c & \text { and } \\ \frac{a}{c}>\frac{b}{c} \\ \text { for any } c<0: & a c<b c & \text { and } \\ \frac{a}{c}<\frac{b}{c}\end{array}\right.$

Exercise Solve the inequality

- $3 x-5<6-2 x \quad$ [Answer: $x<\frac{11}{5}$ or $\left(-\infty, \frac{11}{5}\right)$]
- $13-7 x \geq 10 x-4 \quad[$ Answer: $x \leq 1$ or $\quad(-\infty, 1]]$

Solving compound inequality using the connective "and"/"or"

Example Solve $\frac{2}{3} \leq-\frac{4}{5}(x-3)<1$.
Solution:

$$
\begin{aligned}
& \frac{2}{3}\left(-\frac{5}{4}\right) \geq x-3>1\left(-\frac{5}{4}\right) \Rightarrow-\frac{5}{6} \geq x-3>-\frac{5}{4} \Rightarrow-\frac{5}{6}+3 \geq x>-\frac{5}{4}+3 \\
& \Rightarrow \frac{13}{6} \geq x>\frac{7}{4}
\end{aligned}
$$

Example Solve $3 x+7 \leq 2$ or $2 x+3 \geq 5$.
Solution:

$$
3 x+7 \leq 2 \text { or } 2 x+3 \geq 5 \Rightarrow 3 x \leq-5 \text { or } 2 x \geq 2 \Rightarrow x \leq-\frac{5}{3} \text { or } x \geq 1
$$

Linear Equations and Inequalities (1 variable)

Exercise Solve the inequality

- $-3<2 x+5 \leq 7$ [Answer: $-4<x \leq 1$ or $(-4,1$]]
- $2 x-5 \leq-7$ or $2 x-5>1$ [Answer: $x \leq-1$ or $x>3$, or $(-\infty,-1] \cup(3, \infty)$]

Example Solve $\left|\frac{x-3}{7}\right|<1$.
Solution:
(Rewrite the inequality without using the absolute value notation) $-1<\frac{x-3}{7}<1$
(Solve the inequality by using the properties of inequalities) $-7<x-3<7$
$\Rightarrow-4<x<10$, or using interval notation, $(-4,10)$.

Exercise Solve the inequality

- $|3 x+2|<5 \quad$ [Answer: $-\frac{7}{3}<x<1$ or $\left(-\frac{7}{3}, 1\right)$]
- $|x-3|<1$ [Answer: $2<x<4$ or $(2,4)]$
- $\left|\frac{\mathrm{x}-4}{6}\right|<\frac{1}{2} \quad$ [Answer: $1<x<7$ or $\left.(1,7)\right]$
- $\left|\frac{\mathrm{x}+2}{3}\right| \leq 2 \quad$ [Answer: $-8 \leq x \leq 4$ or $\quad[-8,4]$]
- $|5-2 x| \geq 1$ [Answer: $x \leq 2$ or $x \geq 3$, or $(-\infty, 2] \cup[3, \infty)$]

Trichotomy Property

For any two real numbers a and b, exactly one of the three conditions is satisfied:

$$
a<b, \text { or } a=b, \text { or } a>b
$$

