Mid - point Formula : $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

DistanceFormula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

<u>Circle centered at (h, k) with radius r</u>: $(x - h)^2 + (y - k)^2 = r^2$

Example Find the center and the radius of the circle with equation $x^2 + y^2 - 9x - 6y + 8 = 0$.

Solution:

- (Rewrite the equation in the standard form by first separating the terms in the equation
 - according to the variables)

$$[x^2 - 9x] + [y^2 - 6y] + 8 = 0$$

(Complete the Square)

$$\left[\left(x^2 - 9x + \left(\frac{-9}{2}\right)^2 \right) - \left(\frac{-9}{2}\right)^2 \right] + \left[\left(y^2 - 6y + \left(\frac{-6}{2}\right)^2 \right) - \left(\frac{-6}{2}\right)^2 \right] + 8 = 0$$

$$\Rightarrow \left[\left(x - \frac{9}{2} \right)^2 - \frac{81}{4} \right] + \left[(y - 3)^2 - 9 \right] + 8 = 0$$

(Collect like terms and write the equation in standard form)

$$\Rightarrow \left(x - \frac{9}{2}\right)^2 - \frac{81}{4} + (y - 3)^2 - 9 + 8 = 0 \Rightarrow \left(x - \frac{9}{2}\right)^2 + (y - 3)^2 = \frac{85}{4}$$

Center = $\left(\frac{9}{2}, 3\right)$, radius = $\sqrt{\frac{85}{4}} = \frac{\sqrt{85}}{2}$

Exercise

- Find the equation of a circle which has a diameter connecting the two points (2, -3) and (6,4). [Answer: x² + y² 8x y = 0]
- Sketch the graph of the following equation.

Equation	Answer	Equation	Answer
$x^2 + y^2 = 4$		$x = \sqrt{4y - y^2}$	y 2 0 0 05 10 15 20

Equation	Answer	Equation	Answer
$y = \sqrt{4 - x^2}$		$x = -\sqrt{4 - y^2}$	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & $
$x^2 + y^2 = 2y$			

Parabola:

- vertex at (h, k) and axis parallel to the x-axis: $(y k)^2 = 4p(x h)$
- vertex at (h, k) and axis parallel to the y-axis: $(x h)^2 = 4p(y k)$

Example Find the vertex and the x- and y-intercepts of the parabola $x^2 + y = 6x$.

Sketch the graph.

Solution:

(Set
$$y = 0$$
 and solve for x for the x-intercept(s)) $y = 0$: $x^2 = 6x \Rightarrow x^2 - 6x = 0$

 $\Rightarrow x(x-6) = 0 \Rightarrow x = 0 \text{ or } x-6 = 0 \Rightarrow x = 0 \text{ or } x = 6$ (x-intercepts)

(set x = 0 and solve for *y* for the *y*-intercept)

 $x = 0: 0^2 + y = 6(0) \Rightarrow y = 0$ (y-intercept)

(To find the vertex, we need to use the method of completing the square to rewrite the equation in the standard form; first we identify the term involving the square of a variable in the equation, rearrange the terms in the equation so that all terms involving that variable are on the same side of the equation) $x^2 - 6x + y = 0$

(Complete the square)

$$\left[x^2 - 6x + \left(\frac{-6}{2}\right)^2\right] - \left(\frac{-6}{2}\right)^2 + y = 0 \Rightarrow [x^2 - 6x + 9] - 9 + y = 0$$
$$\Rightarrow (x - 3)^2 - 9 + y = 0$$

(Write the equation in standard form and identify the vertex)

 $\Rightarrow y - 9 = -(x - 3)^2$ Vertex = (3, 9)

(Sketch the graph)

Exercise

- Find the vertex of the parabola and sketch the graph.
 - $y^2 2y 8x 31 = 0$ [Answer: vertex: (-4,1), focus: (-2,1), directrix: x = -6] ○ $x^2 + 6x + 4y + 5 = 0$ [Answer: vertex: (-3,1), focus: (-3,0), directrix: y = 2]
- Find the vertex, the axis of symmetry, and the maximum or minimum value of the function, then graph the function.

$$y = x^2 + 10x + 23$$

[Answer: Vertex: (-5, -2), axis of symmetry: x = -5, minimum value: -2]

$$y = \frac{1}{2}x^2 - 4x + 8$$

[Answer: Vertex: (4,0), axis of symmetry: x = 4, minimum value: 0]

$$\circ \ y = -2x^2 + 10x - \frac{23}{2}$$

[Answer: Vertex: $\left(\frac{5}{2}, 1\right)$, axis of symmetry: $x = \frac{5}{2}$, maximum value: 1]

• Sketch the graph of the following equation.

Equation	Answer	Equation	Answer
$y = x^2 - 9x - 12$	-2 0 2 4 6 8 1 -2 0 2 4 6 8 1 -10 4 7 -20 - -30 -	$y = \sqrt{4 - x}$	y 1 -3 -4 -3 -2 -1 0 1 2 3 4

Equation	Answer	Equation	Answer
$x = -\sqrt{2y}$	3 4 4 3 - 7 2 - 1 - 1 - 0		

<u>Ellipse</u> (a > b):

- centered at (h, k) with major axis parallel to the x-axis: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$
- centered at (h, k) with major axis parallel to the y-axis: $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$

Example Sketch the solution set of the inequality $4 - x^2 - 4y^2 \ge 0$

Solution:

(Replace the inequality by an equation, which defines a curve representing the boundary of the solution set we are looking for)

$$4 - x^{2} - 4y^{2} = 0 \Rightarrow x^{2} + 4y^{2} = 4 \Rightarrow$$

$$\frac{x^{2}}{4} + \frac{y^{2}}{1} = 1$$
(This is an ellipse centered at the origin

with horizontal major axis of length

2a = 4 and vertical minor axis of

length 2b = 2.)

(Pick a test point from each region and check whether the coordinates of the test point satisfy the inequality; if it does, all points in the same region as that test point is part of the solution set; otherwise, the region that the test point belongs to is not part of the solution set)

Test point (0,0):
$$4 - 0^2 - 4(0^2) \ge 0$$
? Yes!
Test point (3,0): $4 - 3^2 - 4(0^2) \ge 0$? No!

Moreover, since the points on the ellipse satisfy the equation $4 - x^2 - 4y^2 = 0$, they also satisfy the inequality $4 - x^2 - 4y^2 \ge 0$.

Hence the solution set of the inequality contains all the points inside the ellipse, including the points on the ellipse.

<u>Hyperbola</u> (a > b):

• centered at (h, k) with foci (and vertices) on a horizontal line (same y-coordinates):

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

• centered at (*h*, *k*) with foci (and vertices) on a vertical line (same *x*-coordinates):

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Exercise Find the center and the vertices of the hyperbola

 $4y^2 - x^2 + 24y + 4x + 28 = 0$, and then sketch the graph.

[Answer: center: (2, -3), vertices: (2, -4), (2, -2)]