Conic Sections

Mid - point Formula : $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
DistanceFormula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Circle centered at (h, k) with radius $r:(x-h)^{2}+(y-k)^{2}=r^{2}$
Example Find the center and the radius of the circle with equation $x^{2}+y^{2}-9 x-6 y+8=0$.

Solution:

(Rewrite the equation in the standard form by first separating the terms in the equation according to the variables)

$$
\left[x^{2}-9 x\right]+\left[y^{2}-6 y\right]+8=0
$$

(Complete the Square)

$$
\begin{aligned}
& {\left[\left(x^{2}-9 x+\left(\frac{-9}{2}\right)^{2}\right)-\left(\frac{-9}{2}\right)^{2}\right]+\left[\left(y^{2}-6 y+\left(\frac{-6}{2}\right)^{2}\right)-\left(\frac{-6}{2}\right)^{2}\right]+8=0} \\
& \Rightarrow\left[\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}\right]+\left[(y-3)^{2}-9\right]+8=0
\end{aligned}
$$

(Collect like terms and write the equation in standard form)

$$
\Rightarrow\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}+(y-3)^{2}-9+8=0 \Rightarrow\left(x-\frac{9}{2}\right)^{2}+(y-3)^{2}=\frac{85}{4}
$$

Center $=\left(\frac{9}{2}, 3\right)$, radius $=\sqrt{\frac{85}{4}}=\frac{\sqrt{85}}{2}$

Exercise

- Find the equation of a circle which has a diameter connecting the two points $(2,-3)$ and $(6,4)$. [Answer: $\left.x^{2}+y^{2}-8 x-y=0\right]$
- Sketch the graph of the following equation.

Equation	Answer	Equation	Answer
$x^{2}+y^{2}=4$	$x=\sqrt{4 y-y^{2}}$		

Equation	Answer	Equation	Answer
$y=\sqrt{4-x^{2}}$		$x=-\sqrt{4-y^{2}}$	
$x^{2}+y^{2}=2 y$			

Parabola:

- vertex at (h, k) and axis parallel to the x-axis: $(y-k)^{2}=4 p(x-h)$
- vertex at (h, k) and axis parallel to the y-axis: $(x-h)^{2}=4 p(y-k)$

Example Find the vertex and the x - and y-intercepts of the parabola $x^{2}+y=6 x$.

Sketch the graph.

Solution:

(Set $y=0$ and solve for x for the x-intercept(s)) $y=0: x^{2}=6 x \Rightarrow x^{2}-6 x=0$

$$
\Rightarrow x(x-6)=0 \Rightarrow x=0 \text { or } x-6=0 \Rightarrow \boldsymbol{x}=\mathbf{0} \text { or } \boldsymbol{x}=\mathbf{6} \quad(x \text {-intercepts })
$$

(set $x=0$ and solve for y for the y-intercept)

$$
x=0: 0^{2}+y=6(0) \Rightarrow \boldsymbol{y}=\mathbf{0} \quad(y \text {-intercept })
$$

(To find the vertex, we need to use the method of completing the square to rewrite the equation in the standard form; first we identify the term involving the square of a variable in the equation, rearrange the terms in the equation so that all terms involving that variable are on the same side of the equation) $x^{2}-6 x+y=0$
(Complete the square)

$$
\begin{aligned}
& {\left[x^{2}-6 x+\left(\frac{-6}{2}\right)^{2}\right]-\left(\frac{-6}{2}\right)^{2}+y=0 \Rightarrow\left[x^{2}-6 x+9\right]-9+y=0} \\
& \quad \Rightarrow(x-3)^{2}-9+y=0
\end{aligned}
$$

(Write the equation in standard form and identify the vertex)

$$
\Rightarrow y-9=-(x-3)^{2} \quad \text { Vertex }=(3,9)
$$

(Sketch the graph)

Conic Sections

Exercise

- Find the vertex of the parabola and sketch the graph.
- $y^{2}-2 y-8 x-31=0 \quad$ [Answer: vertex: $(-4,1)$, focus: $(-2,1)$, directrix: $\left.x=-6\right]$
- $x^{2}+6 x+4 y+5=0 \quad$ [Answer: vertex: $(-3,1)$, focus: $(-3,0)$, directrix: $y=2$]
- Find the vertex, the axis of symmetry, and the maximum or minimum value of the function, then graph the function.
- $y=x^{2}+10 x+23$
[Answer: Vertex: $(-5,-2)$, axis of symmetry: $x=-5$, minimum value: -2]
- $y=\frac{1}{2} x^{2}-4 x+8$
[Answer: Vertex: $(4,0)$, axis of symmetry: $x=4$, minimum value: 0]
- $y=-2 x^{2}+10 x-\frac{23}{2}$
[Answer: Vertex: $\left(\frac{5}{2}, 1\right)$, axis of symmetry: $x=\frac{5}{2}$, maximum value: 1]
- Sketch the graph of the following equation.

Equation	Answer	Equation	Answer
$y=x^{2}-9 x-12$			

pg. 3

Equation	Answer	Equation	Answer
$x=-\sqrt{2 y}$		\ddots	

Ellipse ($a>b$):

- centered at (h, k) with major axis parallel to the x-axis: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
- centered at (h, k) with major axis parallel to the y-axis: $\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$

Example Sketch the solution set of the inequality $4-x^{2}-4 y^{2} \geq 0$

Solution:

(Replace the inequality by an equation, which defines a curve representing the boundary of the solution set we are looking for)

$$
\begin{aligned}
& 4-x^{2}-4 y^{2}=0 \Rightarrow x^{2}+4 y^{2}=4 \Rightarrow \\
& \frac{x^{2}}{4}+\frac{y^{2}}{1}=1
\end{aligned}
$$

(This is an ellipse centered at the origin with horizontal major axis of length $2 a=4$ and vertical minor axis of

length $2 b=2$.)
(Pick a test point from each region and check whether the coordinates of the test point satisfy the inequality; if it does, all points in the same region as that test point is part of the solution set; otherwise, the region that the test point belongs to is not part of the solution set)

Test point $(0,0): 4-0^{2}-4\left(0^{2}\right) \geq 0$? Yes!
Test point (3,0): $4-3^{2}-4\left(0^{2}\right) \geq 0$? No!
Moreover, since the points on the ellipse satisfy the equation $4-x^{2}-4 y^{2}=0$, they also satisfy the inequality $4-x^{2}-4 y^{2} \geq 0$.

Hence the solution set of the inequality contains all the points inside the ellipse, including the points on the ellipse.

Hyperbola $(a>b)$:

- centered at (h, k) with foci (and vertices) on a horizontal line (same y-coordinates):

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

- centered at (h, k) with foci (and vertices) on a vertical line (same x-coordinates):

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Exercise Find the center and the vertices of the hyperbola $4 y^{2}-x^{2}+24 y+4 x+28=0$, and then sketch the graph.
[Answer: center: $(2,-3)$, vertices: $(2,-4),(2,-2)$]

