Binomial Theorem

Binomial Theorem: For any non-negative integer n,

$$
\begin{aligned}
& (a+b)^{n}=\sum_{r=0}^{n} C(n, r) a^{n-r} b^{r} \\
& =C(n, 0) a^{n}+C(n, 1) a^{n-1} b+\cdots+C(n, r) a^{n-r} b^{r}+\cdots+C(n, n-1) a b^{n-1}+C(n, n) b^{n}
\end{aligned}
$$

where $C(n, r)=\frac{n!}{r!(n-r)!}$.
Note: One can also get the values for $C(n, r)$ by using the Pascal's triangle:

- The first row has a single entry of 1 ; the number of entries increases by one as we move from any row to the next row

- Starting with the second row, the first and last entries of the row are always 1 ; any other entry in a row is equal to the sum of the nearest two entries in the previous row.

Example Expand $(3 k+1)^{2}$.

Solution:

(Since the power $n=2$ is relatively small, we can simply multiply out directly using
FOIL; an alternative method is to apply the Binomial Theorem with

$$
a=3 k, b=1, n=2)
$$

(Method 1: Use the Square of a Sum Formula $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right)$

$$
(3 k+1)^{2}=(3 k)^{3}+2(3 k)(1)+(1)^{2}=\mathbf{9} \boldsymbol{k}^{2}+\mathbf{6} \boldsymbol{k}+\mathbf{1}
$$

(Method 2: Multiply out directly using FOIL)

$$
(3 k+1)^{2}=(3 k+1)(3 k+1)=9 k^{2}+3 k+3 k+1=\mathbf{9} \boldsymbol{k}^{2}+\mathbf{6} \boldsymbol{k}+\mathbf{1}
$$

(Method 3: Apply the Binomial Theorem)

$$
\begin{aligned}
(3 k+ & 1)^{2}=\sum_{r=0}^{2} C(2, r)(3 k)^{2-r}(1)^{r}=\sum_{r=0}^{2} C(2, r)(3 k)^{2-r} \\
& =C(2,0)(3 k)^{2}+C(2,1)(3 k)^{1}+C(2,2)(3 k)^{0} \\
& =\frac{2!}{0!2!}\left(9 k^{2}\right)+\frac{2!}{1!1!}(3 k)+\frac{2!}{2!0!}(1)=\frac{2}{(1)(2)}\left(9 k^{2}\right)+\frac{2}{(1)(1)}(3 k)+\frac{2}{(2)(1)} \\
& =9 k^{2}+2(3 k)+1=\mathbf{9} \boldsymbol{k}^{\mathbf{2}}+\mathbf{6 k}+\mathbf{1}
\end{aligned}
$$

Exercise Without using a calculator,

- expand $\left(x^{2}-2 y\right)^{5}$. [Answer: $x^{10}-10 x^{8} y+40 x^{6} y^{2}-80 x^{4} y^{3}+80 x^{2} y^{4}-32 y^{5}$]
- expand $\left(\frac{2}{x}+3 \sqrt{x}\right)^{4}$. [Answer: $\frac{16}{x^{4}}+\frac{96}{x^{5 / 2}}+\frac{216}{x}+216 x^{1 / 2}+81 x^{2}$]

Binomial Theorem

Example Find the coefficient of $x^{5} y^{7}$ in the expansion of $(2 x-3 y)^{12}$.

Solution:

(Since the power $n=12$ is relatively large, multiplying out directly is tedious and prompt for errors; instead, we can apply the Binomial Theorem, which states that the term in the expansion involving $x^{5} y^{7}$ is the $8^{\text {th }}$ term $[12-r=5 \Rightarrow r=7$]

$$
\begin{aligned}
& \left.C(12,7) \times(2 x)^{5} \times(-3 y)^{7}=C(12,7)(2)^{5}(-3)^{7} x^{5} y^{7}\right) \\
& C(12,7)(2)^{5}(-3)^{7}=\frac{12!}{7!5!}\left(2^{5}\right)\left[-\left(3^{7}\right)\right]=-\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}\left(2^{5}\right)\left(3^{7}\right)=-\mathbf{5 5}, \mathbf{4 2 7}, \mathbf{3 2 8}
\end{aligned}
$$

Exercise (You can use a regular scientific non-graphing non-programmable calculator)

- Find the $5^{\text {th }}$ term in the expansion of $(2 x-5 y)^{6}$. [Answer: $37,500 x^{2}$]
- Find the $8^{\text {th }}$ term in the expansion of $(3 x-2)^{10}$. [Answer: $-414,720 x^{3}$]

