Applications of Integration

Rectilinear Motion

Velocity: $v=\int a(t) d t ;$ Displacement: $s=\int v(t) d t$
Example During the initial stage of launching a spacecraft vertically, the acceleration $a\left(\mathrm{in} \mathrm{m} / \mathrm{s}^{2}\right.$) of the spacecraft is $a=6 t^{2}$. Find the height s of the spacecraft after 6.0 s if $s=12 \mathrm{~m}$ for $t=0.0 \mathrm{~s}$ and $v=16 \mathrm{~m} / \mathrm{s}$ for $t=2.0 \mathrm{~s}$.

Solution:

(Integrate the formula for acceleration to get the formula for velocity)

$$
v=\int 6 t^{2} d t=6\left(\frac{1}{3} t^{3}\right)+C_{1}=2 t^{3}+C_{1}
$$

(Use the given information $v(2)=16$ to find C_{1})

$$
16=2\left(2^{3}\right)+C_{1} \Rightarrow 16=16+C_{1} \Rightarrow C_{1}=0 \Rightarrow v=2 t^{3}
$$

(Integrate the formula found for the velocity to find that for the displacement, or height, s)

$$
s=\int 2 t^{3} d t=2\left(\frac{1}{4} t^{4}\right)+C_{2}=\frac{1}{2} t^{4}+C_{2}
$$

(Use the information $s(0)=12$ to find C_{2})

$$
\begin{aligned}
& 12=\frac{1}{2}\left(0^{4}\right)+C_{2} \Rightarrow 12=0+C_{2} \Rightarrow C_{2}=12 \\
& \Rightarrow s=\frac{1}{2} t^{4}+12
\end{aligned}
$$

(Find the height after 6.0 s$) \quad s(6)=\frac{1}{2}\left(6^{4}\right)+12=\mathbf{6 6 0}(\mathrm{m})$

Exercise

- A ball is thrown vertically from the top of a building 24.5 m high and hits the ground 5.0 s later. What initial velocity was the ball given? Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
[Answer: $19.6 \mathrm{~m} / \mathrm{s}$ upward]
- The velocity v of an object as a function of the time t is $v=60-4 t$. Find the expression for the displacement s if $s=10$ for $t=0$. [Answer: $s=10+60 t-2 t^{2}$]

Areas

- Between a curve and the x-axis: $A=\int_{a}^{b} y d x=\int_{a}^{b} f(x) d x$
- Between a curve and the y-axis: $A=\int_{c}^{d} x d y=\int_{c}^{d} g(y) d y$
- Between two curves on x-axis: $A=\int_{a}^{b}\left(y_{2}-y_{1}\right) d x$
- Between two curves on y-axis: $A=\int_{c}^{d}\left(x_{2}-x_{1}\right) d y$

Applications of Integration

Example Find the area bounded by the parabola $y=x^{2}$ and the line $y=x+2$.

Solution:

(Find intersection points of the curves)

$$
x^{2}=x+2 \Rightarrow x^{2}-x-2=0 \Rightarrow(x+1)(x-2)=0 \Rightarrow x=-1,2
$$

(Sketch the graphs)
$y=x^{2}$ is the standard parabola that opens up;
$y=x+2$ is the straight line with slope $m=1$
and
y-intercept $b=2$

(Setup and evaluate an integral for the area)

$$
\begin{aligned}
& \int_{-1}^{2}\left((x+2)-x^{2}\right) d x=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\left[\frac{1}{2} x^{2}+2 x-\frac{1}{3} x^{3}\right]_{-1}^{2} \\
& =\left(\frac{1}{2} \cdot 2^{2}+2 \cdot 2-\frac{1}{3} \cdot 2^{3}\right)-\left(\frac{1}{2} \cdot(-1)^{2}+2 \cdot(-1)-\frac{1}{3} \cdot(-1)^{3}\right) \\
& =\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)=2+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}=\frac{9}{2}
\end{aligned}
$$

Exercise

- Find the area in the first quadrant bounded by
- $y=9-x^{2} \quad$ [Answer: 18]
- $y=\frac{1}{\sqrt{16-x^{2}}}$ and $x=3 \quad$ [Answer: $\sin ^{-1} \frac{3}{4} \approx 0.8481$]
- Find the area bounded by
- $y=x^{2}+1, y=0, x=0$, and $x=4 \quad$ [Answer: $\frac{76}{3}$]
- $y=x^{3}, y=0, x=1$, and $x=2 \quad\left[\right.$ Answer: $\frac{15}{4}$]
- $y=2 x^{2}, y=0, x=1$, and $x=2 \quad$ [Answer: $\frac{14}{3}$]
- $y=x^{3}-3$ and the lines $x=2, y=-1$, and $y=3$
[Answer: $8-\frac{9}{2} \sqrt[3]{6}+\frac{3}{2} \sqrt[3]{2} \approx 1.713$]
- $y=x^{3}-3 x-2$ and the x-axis [Answer: $\frac{27}{4}$]
- $y=\frac{1}{4} x^{2}, y=0$ and $x=2 \quad$ [Answer: $\frac{2}{3}$]

Applications of Integration

- Find the first-quadrant area bounded by $y=\frac{e^{2 x}}{\sqrt{e^{2 x}}+1}$ and $x=1.5$.
[Answer: $\sqrt{e^{3}+1}-\sqrt{2} \approx 3.178$]

Volumes of Rotation

- Shell Method:
$d V=2 \pi($ radius $) \times($ height $) \times($ thickness $) \Rightarrow$
$\left\{\begin{array}{l}V=2 \pi \int_{a}^{b} x \cdot y d x=2 \pi \int_{a}^{b} x \cdot f(x) d x \\ V=2 \pi \int_{c}^{d} y \cdot x d y=2 \pi \int_{c}^{d} y \cdot g(y) d y\end{array}\right.$
- Disk Method: $d V=\pi(\text { radius })^{2} \times($ thickness $) \Rightarrow\left\{\begin{array}{l}V=\pi \int_{a}^{b} y^{2} d x=\pi \int_{a}^{b}[f(x)]^{2} d x \\ V=\pi \int_{c}^{d} x^{2} d y=\pi \int_{c}^{d}[g(y)]^{2} d y\end{array}\right.$

Example Find the volume of the solid generated by revolving the region bounded by $y=\frac{1}{4} x^{2}, y=0$ and $x=2$ about the x-axis.

Solution:
(Method 1: Rotate vertical elements about the x-axis - Disk Method)

$$
\begin{aligned}
V & =\pi \int_{a}^{b} y^{2} d x=\pi \int_{0}^{2}\left(\frac{1}{4} x^{2}\right)^{2} d x=\pi \frac{1}{16} \int_{0}^{2} x^{4} d x \\
& =\left.\frac{\pi}{16}\left(\frac{1}{5} x^{5}\right)\right|_{0} ^{2}=\frac{\pi}{80}\left[2^{5}-0^{5}\right]=\frac{32}{80} \pi=\frac{2}{5} \pi
\end{aligned}
$$

(Method 2: Rotate horizontal elements about the x-axis - Shell Method)

$$
y=\frac{1}{4} x^{2} \Rightarrow x^{2}=4 y \Rightarrow x=+2 \sqrt{y} \quad \text { (for the right half of }
$$ the parabola)

$$
\begin{aligned}
V & =2 \pi \int_{c}^{d} y \cdot x d y=2 \pi \int_{0}^{1} y \cdot(2-2 \sqrt{y}) d y \\
& =4 \pi \int_{0}^{1}(y-y \sqrt{y}) d y=4 \pi \int_{0}^{1}\left(y-y^{3 / 2}\right) d y \\
& =\left.4 \pi\left[\frac{1}{2} y^{2}-\frac{2}{5} y^{5 / 2}\right]\right|_{0} ^{1}=4 \pi\left[\left(\frac{1}{2}-\frac{2}{5}\right)-(0-0)\right] \\
& =4 \pi \cdot \frac{1}{10}=\frac{4}{10} \pi=\frac{2}{5} \pi
\end{aligned}
$$

Applications of Integration

Exercise

- Find the volume of the solid generated by revolving the first-quadrant region bounded by $y=2 x, y=6$, and $x=0$ about the y-axis. [Answer: 18π]
- Find the volume of the solid generated by revolving the region bounded by the curve $y=\frac{3}{\sqrt{4 x+3}}, x=2.5$, and the axes about the x-axis. [Answer: $\frac{9 \pi}{4} \ln \frac{13}{3} \approx 10.4$]
- Find the volume of the solid generated by revolving the region bounded by $y=x^{2}, x=0$ and $y=9$ about the x-axis. [Answer: $\frac{972 \pi}{5}$]

Centre of mass: $m_{1} d_{1}+m_{2} d_{2}+\cdots+m_{n} d_{n}=\left(m_{1}+m_{2}+\cdots+m_{n}\right) \bar{d}$

Centroid of an Area by Integration

(a) If vertical elements are used, $\bar{x}=\frac{\int_{a}^{b} x\left(y_{2}-y_{1}\right) d x}{\int_{a}^{b}\left(y_{2}-y_{1}\right) d x}$
(b) If horizontal elements are used, $\bar{y}=\frac{\int_{c}^{d} y\left(x_{2}-x_{1}\right) d y}{\int_{c}^{d}\left(x_{2}-x_{1}\right) d y}$

Example Find the coordinates of the centroid of a thin plate covering the region bounded by the parabola $y=x^{2}$ and the line $y=4$.

Solution:

$$
y=x^{2} \Rightarrow x_{1}=-\sqrt{y} \text { or } x_{2}=+\sqrt{y}
$$

Using horizontal elements,

$$
\begin{aligned}
& \bar{y}=\frac{\int_{0}^{4} y[\sqrt{y}-(-\sqrt{y})] d y}{\int_{0}^{4}[\sqrt{y}-(-\sqrt{y})] d y}=\frac{\int_{0}^{4} 2 y \sqrt{y} d y}{\int_{0}^{4} 2 \sqrt{y} d y}=\frac{z \int_{0}^{4} y^{3 / 2} d y}{z \int_{0}^{4} y^{1 / 2} d y} \\
& =\frac{\left.(2 / 5) y^{5 / 2}\right|_{0} ^{4}}{\left.(2 / 3) y^{3 / 2}\right|_{0} ^{4}}=\frac{(2 / 5)\left(4^{5 / 2}-0^{5 / 2}\right)}{(2 / 3)\left(4^{3 / 2}-0^{3 / 2}\right)}=\frac{(2 / 5)(32)}{(2 / 3)(8)}=\frac{12}{5}
\end{aligned}
$$

Due to symmetry with respect to the vertical y-axis,, we expect $\bar{x}=0$:

$$
\bar{x}=\frac{\int_{-2}^{2} x\left(4-x^{2}\right) d y}{\int_{-2}^{2}\left(4-x^{2}\right) d y}=\frac{\int_{-2}^{2}\left(4 x-x^{3}\right) d y}{\int_{-2}^{2}\left(4-x^{2}\right) d y}=\frac{\left.\left(2 x^{2}-\frac{1}{4} x^{4}\right)\right|_{-2} ^{2}}{\left.\left(4 x-\frac{1}{3} x^{3}\right)\right|_{-2} ^{2}}=\frac{(8-4)-(8-4)}{\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)}=\frac{0}{32 / 3}=0
$$

Hence the centroid is $(\bar{x}, \bar{y})=\left(\mathbf{0}, \frac{\mathbf{1 2}}{\mathbf{5}}\right)$.

Applications of Integration

Exercise

- Find the centroid of an isosceles right triangle plate with side a.
[Answer: The centroid is located at the point on the plate that is at a distance $a / 3$ from each of the side of length a]

Radius of Gyration: $\mathrm{m}_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{m}_{2} \mathrm{~d}_{2}{ }^{2}+\cdots+\mathrm{m}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}}{ }^{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\cdots+\mathrm{m}_{\mathrm{n}}\right) R^{2}$
Moment of Inertia of Area: $\quad I_{y}=k \int_{a}^{b} x^{2}\left(y_{2}-y_{1}\right) d x ; \quad I_{x}=k \int_{c}^{d} y^{2}\left(x_{2}-x_{1}\right) d y$
Example Find the moment of inertia and the radius of gyration of the plate (with uniform density k) covering the region bounded by $y=4 x^{2}, x=1$, and the x-axis with respect to the y-axis.

Solution:

$$
\begin{aligned}
& I_{y}=k \int_{0}^{1} x^{2}(y-0) d x=k \int_{0}^{1} x^{2}\left(4 x^{2}\right) d x \\
&=4 k \int_{0}^{1} x^{4} d x=\left.4 k\left(\frac{1}{5}\right) x^{5}\right|_{0} ^{1}=\frac{4 k}{5}(1-0)=\frac{4 k}{5} \\
& m=k \int_{0}^{1}(y-0) d x=k \int_{0}^{1}\left(4 x^{2}\right) d x \\
&=4 k \int_{0}^{1} x^{2} d x=\left.4 k\left(\frac{1}{3}\right) x^{3}\right|_{0} ^{1}=\frac{4 k}{3}(1-0)=\frac{4 k}{3} \\
& m R_{y}{ }^{2}=I_{y} \Rightarrow R_{y}=\sqrt{\frac{I_{y}}{m}}=\sqrt{\frac{4 k / 5}{4 k / 3}}=\frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{15}}{5}
\end{aligned}
$$

Exercise

- Find the moment of inertia of a right triangular plate with sides a and b with respect to the side b. Assume the plate the uniform density $k=1$. [Answer: $\frac{1}{12} a^{3} \mathrm{~b}$]
- Find the moment of inertial and the radius of gyration with respect to the x-axis of the solid (with uniform density k) generated by revolving the region bounded by the curves of $y^{3}=x, y=2$, and the y-axis about the x-axis. [Answer: $I_{x}=\frac{256 \pi k}{7}, R_{x}=\frac{2}{7} \sqrt{35}$]
- Find the moment of inertia of a disk (of radius r) with respect to its axis and in terms of its mass. [Answer: $\frac{1}{2} m r^{2}$]

Applications of Integration

Example Find y in terms of x if $\frac{d y}{d x}=\sqrt{2 x+1}$ and the curve $y=f(x)$ passes through the point $(0,2)$.

Solution:

(Solve the differential equation using separation of variables; to integrate $\sqrt{2 x+1}$, use the simple substitution $u=2 x+1, d u=2 d x$)

$$
\begin{aligned}
& \frac{d y}{d x}=\sqrt{2 x+1} \Rightarrow d y=\sqrt{2 x+1} d x \Rightarrow \int d y=\int \sqrt{2 x+1} d x \\
& \Rightarrow y=\frac{1}{2} \int \sqrt{2 x+1}(2) d x=\frac{1}{2} \cdot \frac{1}{3 / 2}(2 x+1)^{3 / 2}+C=\frac{1}{3}(2 x+1)^{3 / 2}+C
\end{aligned}
$$

(Determine C by using the condition that $y=2$ when $x=0$)

$$
\begin{aligned}
& 2=\frac{1}{3}(2 \times 0+1)^{3 / 2}+C \Rightarrow 2=\frac{1}{3}+C \Rightarrow C=2-\frac{1}{3}=\frac{5}{3} \\
& \Rightarrow \boldsymbol{y}=\frac{1}{3}(2 \boldsymbol{x}+\mathbf{1})^{3 / 2}+\frac{5}{3}
\end{aligned}
$$

Exercise

- Find the equation of the curve for which $\frac{d y}{d x}=\frac{e^{\sqrt{x+1}}}{\sqrt{x+1}}$ if the curve passes through $(0,1)$.
[Answer: $y=2 e^{\sqrt{x+1}}+1-2 e$]
- Find the equation of the curve for which $\frac{d y}{d x}=3 x-1$ if the curve passes through $(1,4)$.
[Answer: $y=\frac{3}{2} x^{2}-x+\frac{7}{2}$]
- Find y in terms of x if $\frac{d y}{d x}=(6-x)^{4}$ and the curve passes through $(5,2)$.
[Answer: $y=-\frac{1}{5}(6-x)^{5}+\frac{11}{5}$]
- Solve the differential equation:

○ $\frac{d x}{d t}=\frac{x}{t^{2}+4} \quad\left[\right.$ Answer: $\ln x=\frac{1}{2} \tan ^{-1} \frac{t}{2}+C$, or $\left.x=C_{1} e^{\left(\frac{1}{2} \tan ^{-1} \frac{t}{2}\right)}\right]$

- $2 e^{3 x} \sin y d x+e^{x} \csc y d y=0 \quad$ [Answer: $e^{2 x}-\cot y=C$, or $y=\tan ^{-1}\left(\frac{1}{e^{2 x}-C}\right)$]
- Solve the differential equation subject to the given condition:

○ $\left(x^{2}+1\right)^{2} d y+4 x d x=0 ; x=1$ when $y=2 \quad$ [Answer: $y=\frac{2}{x^{2}+1}+1$]
○ $(x y+y) \frac{d y}{d x}=2 ; \quad y=2$ when $x=0 \quad$ [Answer: $y=2 \sqrt{1+\ln (x+1)}$]

Applications of Integration

Integrating Combinations

$d(x y)=x d y+y d x$	$d\left(x^{2}+y^{2}\right)=2(x d x+y d y)$
$d\left(\frac{y}{x}\right)=\frac{x d y-y d x}{x^{2}}$	$d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}$

Exercise Find the general solution of the differential equation $x d x+y d y=x^{2} d x+y^{2} d x$.
[Answer: $\ln \left(x^{2}+y^{2}\right)=2 x+C$]

First Order Linear DE: $d y+P(x) y d x=Q(x) d x$: Integrating Factor $e^{\int P(x) d x}$ (7-step process)

1) Rewrite the linear DE into the above standard differential form.
2) Identify P and evaluate $\int P(x) d x$ (without the constant of integration).
3) Find the integrating factor (IF) defined by $e^{\int P(x) d x}$.
4) Multiply both sides of the DE with the IF:

$$
e^{\int P(x) d x} d y+P(x) e^{\int P(x) d x} y d x=Q(x) e^{\int P(x) d x} d x
$$

5) Rewrite the Left hand side of the previous result as a single differential:

$$
d\left(e^{\int P(x) d x} \cdot y\right)=Q(x) e^{\int P(x) d x} d x
$$

6) Integrate both sides of the previous result with respect to x and solve for y.
7) If possible, determine the constant of integration.

Example Find the solution of the initial-value problem:

$$
x^{2} y^{\prime}+2 x y=1 \quad(x>0) ; \quad y(1)=3
$$

Solution:
(Step 1) $x^{2} \frac{d y}{d x}+2 x y=1 \Rightarrow d y+\frac{2}{x} y d x=\frac{1}{x^{2}} d x$
(Step 2) $\int P(x) d x=\int \frac{2}{x} d x=2 \ln |x|=2 \ln x \quad($ as $x>0)$
(Step 3) Integrating Factor (IF) $=e^{2 \ln x}=e^{\ln \left(x^{2}\right)}=x^{2}$
(Step 4) $x^{2}\left(d y+\frac{2}{x} y d x\right)=x^{2}\left(\frac{1}{x^{2}} d x\right) \Rightarrow x^{2} d y+2 x y d x=d x$
(Step 5) $d\left(x^{2} y\right)=d x$
(Step 6) $\int d\left(x^{2} y\right)=\int d x \Rightarrow x^{2} y=x+C \Rightarrow y=\frac{x+C}{x^{2}}$
(Step 7) $y(1)=3 \Rightarrow \frac{1+C}{1^{2}}=3 \Rightarrow 1+C=3 \Rightarrow C=2$
Hence $y=\frac{x+2}{x^{2}}$ or $y=\frac{1}{x}+\frac{2}{x^{2}}$.

Applications of Integration

Electric Current: $i=\frac{d q(t)}{d t} ; \quad$ Electric Charge: $q=\int i(t) d t$
Voltage across a capacitor: $V_{C}=\frac{1}{C} \int i(t) d t$
Example A certain capacitor is measured to have a voltage of 100 V across it. At this instant a current as a function of time given by $i=0.06 \sqrt{t}$ is sent through the circuit. After 0.25 s , the voltage is measured to be 140 V . What is the capacitance of the capacitor?

Solution:

$$
\begin{aligned}
& V_{C}=\frac{1}{C} \int i(t) d t=\frac{1}{C} \int 0.06 \sqrt{t} d t=\frac{0.06}{C} \cdot \frac{1}{3 / 2} t^{3 / 2}+C_{1}=\frac{1}{25 C} t^{3 / 2}+C_{1} \\
& V_{C}(0)=100 \Rightarrow \frac{1}{25 C} \cdot 0^{3 / 2}+C_{1}=100 \Rightarrow C_{1}=100
\end{aligned}
$$

$$
\text { Hence } V_{C}=\frac{1}{25 C} t^{3 / 2}+100
$$

$$
V_{C}(0.25)=140 \Rightarrow \frac{1}{25 C} \cdot 0.25^{3 / 2}+100=140 \Rightarrow \frac{1}{200 C}=40
$$

$$
\Rightarrow C=\frac{1}{200 \times 40}=\mathbf{0 . 0 0 0 1 2 5}(\mathbf{F}) \text { or } 125(\boldsymbol{\mu})
$$

Exercise

- The current in a certain electric circuit as a function of time is given by $i=6 t^{2}+4$.

Find an expression for the amount of charge q that passes a point in the circuit as
a function of time. Assuming that $q=0$ when $t=0$, determine the total charge that passes
the point in 2 s . [Answer: $\left.q=2 t^{3}+4 t+q_{0}, 24 \mathrm{C}\right]$

- The voltage across a $5.0-\mu \mathrm{F}$ capacitor is zero. What is the voltage after 20 ms if a current of 75 mA charges the capacitor? [Answer: 300 V]

Second Order Homogeneous Linear DE: $a_{0} D^{2} y+a_{1} D y+a_{2} y=0$

$$
\text { Auxiliary Equation: } \quad a_{0} m^{2}+a_{1} m+a_{2}=0
$$

$\mathrm{D}>0:$ Distinct Roots:	$y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$
$\mathrm{D}=0$: Repeated Roots:	$y=e^{m x}\left(c_{1}+c_{2} x\right)$
$\mathrm{D}<0$: Complex Roots:	$y=e^{\alpha x}\left(c_{1} \sin (\beta x)+c_{2} \cos (\beta x)\right)$

Applications of Integration

Example Find the general solution of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=3 x$.

Solution:

(First, we get y_{c} by solving the associated homogeneous DE: $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$) Auxiliary equation: $m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \Rightarrow m=2,2$
Hence $y_{c}=e^{2 x}\left(C_{1}+C_{2} x\right) \quad\left(\right.$ or $\left.y_{c}=C_{1} e^{2 x}+C_{2} x e^{2 x}\right)$
(Next, we determine the form of y_{p} by using the non-homogeneous terms on the right hand side together with all their derivatives)

$$
3 \xrightarrow{x} \xrightarrow{D} 3=3 \cdot 1 \xrightarrow{D} 0 \Rightarrow y_{p}=A(x)+B(1)=A x+B
$$

(Note: If the function forms we found in y_{p} appear in y_{c}, we have to multiply them with the lowest power of the variable x to eliminate the duplication.)
(We complete this solution by finding the values of the parameters A and B in y_{p} with the method of undetermined coefficients) $y_{p}=A x+B \Rightarrow y_{p}^{\prime}=A \Rightarrow y_{p}^{\prime \prime}=0$

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=3 x \Rightarrow 0-4(A)+4(A x+B)=3 x \Rightarrow-4 A+4 A x+4 B=3 x
$$

$$
\left\{\begin{array}{cccc}
\text { Constants: } & -4 A+4 B=0 & \Rightarrow & B=A \\
x: & 4 A=3 & \Rightarrow & A=3 / 4
\end{array}\right\} \Rightarrow B=\frac{3}{4}
$$

Hence $y=y_{c}+y_{p} \Rightarrow \boldsymbol{y}=\boldsymbol{e}^{2 x}\left(\boldsymbol{C}_{1}+\boldsymbol{C}_{2} \boldsymbol{x}\right)+\frac{\mathbf{3}}{4} \boldsymbol{x}+\frac{\mathbf{3}}{4}$

Exercise

- Find the general solution of the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=0$.
[Answer: $y=e^{-x}\left[C_{1} \sin (2 x)+C_{2} \cos (2 x)\right]$]
- Find the general solution of the differential equation $2 D^{2} y-D y=2 \cos x$.
[Answer: $y=C_{1}+C_{2} e^{x / 2}-\frac{2}{5} \sin x-\frac{4}{5} \cos x$]
- A mass of 0.5 kg stretches a spring for which $k=32 \mathrm{~N} / \mathrm{m}$. With the weight attached, the spring is pulled 0.3 m longer than its equilibrium length and released. Find the equation of the resulting motion, assuming no damping. (The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.) [Answer: $x=0.3 \cos (8 t)$]

Applications of Integration

Exercise Find the equation for the current as a function of the time (in s) in a circuit containing a 2-H inductance, an 8- Ω resistor, and a 6-V battery in series, if $i=0$ when $t=0$.
[Answer: $i=\frac{3}{4}\left(1-e^{-4 t}\right)$]

